Instruction manual for GCaMP6f transient signal extraction from image sequences

Tiantian Guo, Zichao Bian, Guoan Zheng, and Bin Feng Department of Biomedical Engineering, University to Connecticut, Storrs, CT, 06269

Abstract: This protocol is developed to monitor the DRG neural activities by extracting the GCaMP6f transients from an image sequence. The DRG neural activities are recorded at a resolution of individual action potentials using a regular upright fluorescence microscope. However, both electrical and mechanical stimulation of DRG could introduce unwanted sample movement during the recording process. Although these movements are not obvious via visual inspection, the recorded time-lapse images will contain pixel-level displacements. To extract the accurate neuron activity signals, we first align the captured images using a template-matching approach via an ImageJ plugin in this protocol. We then extract the transient signal via morphological processing and marker-based watershed segmentation. This instruction provides a protocol for characterizing colorectal afferent functions in a mouse ex vivo preparation with distal colorectum, pelvic nerve, L5-S1 DRG, and dorsal roots in continuity.

1. Software installation

We use two software for data processing in this protocol: Fiji and MATLAB. Fiji is a distribution of ImageJ that bundles many popular and useful ImageJ plugins for scientific image analysis^{2,3}. MATLAB is a programming platform designed specifically for engineers and scientists. It can directly express matrix and array mathematics⁴.

Software version requirements: Fiji (1.44 or later version), and MATLAB (R2016b or later version) with the Image Processing Toolbox. Fiji can be downloaded from the following links: <u>https://fiji.sc/</u> or <u>https://imagej.nih.gov/ij/download.html</u>. MATLAB and the Image Processing Toolbox can be downloaded and installed following these two links: <u>https://www.mathworks.com/</u> <u>downloads/</u>, and <u>https://www.mathworks.com/products/image.html</u>.

For Fiji user, the 'Template Matching and Slice Alignment' plugin need to be installed using the following steps:

1) Open Fiji, select the built-in update manager (Fiji's Menu > Help > Update...), and update to the latest Fiji version.

2) Add the following URL via 'Manage update sites' > 'Add update site' (http://sites.imagej. net/Template_Matching/) listed below:

😹 Imagel Updater		<u>1</u>	x נ	🅌 Manage upd	ate sites				×
-				A Na	me	URL		Host	Directory on Hos
						https://sites.imagej.nevTang	101		
Na	me Status Ac	tion Update Site				https://sites.imagej.nev1D3	1		
				I EM suite		nttps://sites.imagej.net/Maki	oten/		
				TensorFlow		https://sites.imagej.net/Tens	son-low/		
				Tissue Analyz	er I	https://sites.imagej.net/TA/			
				TomancakLa	b	https://sites.imagej.net/Ulm	an2/		
				TrackMateCS	VImporter I	https://sites.imagej.net/Trac	kMateCSVImporter/		
				TraJClassifie	r I	https://sites.imagej.net/TraJ	Classifier/		
				Tr2d		https://sites.imagej.net/Tr2d	V		
				U-Net Segme	ntation I	https://sites.imagej.net/Falk	1		
				UCB Vision S	ciences I	https://sites.imagej.net/Llan	nero/		
				🔲 Vale lab plugi	ns I	https://sites.imagej.net/Nico	/		
				Vanderbilt Bio	photonics I	https://sites.imagej.net/Wils	on.adams/		
				VersiLab plug	ins I	https://sites.imagej.net/Swe	eneyian/		
				Virtual Cell		https://sites.imagej.net/VCe	IV		
				Void Whizzard	1 1	https://sites.imagej.net/Vezi	naLab/		
				Volumetric Tis	ssue Explor I	https://sites.imagej.net/ICBI	I-IUPUI/		
				WhiskerTrack	ing I	https://sites.imagej.net/Taro	kiritani/		
				WormSizer	1	https://sites.imagej.net/Brad	tmoore/		
				XitoSBML	1	https://sites.imagej.net/XitoS	SBML/		
				Xlib		https://sites.imagej.net/XIib/			
				Zoom-in-movi	ie I	https://sites.imagej.net/ZOO	M-in-movie/		_
				ZedMate Suite	a	https://sites.imagei.net/Avak	imovich/		
				 Alignment 		https://sites.imagej.net/Tem	plate_Matching/		•
Manage update sites	Apply ch	Advanced mode	Close		Add my si	ite Add update site	Remove U	Jpdate URLs	Close

3) After applying the changes and restarting Fiji, the plugin will appear under the 'Plugins' menu (Plugins > Template Matching) shown below:

💷 (Fiji Is Just) ImageJ	HDF5	→ x
File Edit Image Process Analyze Plugins	Image5D	•
	Integral Image Filters	• >>
Scrolling tool (or press space bar and drag)	Janelia H265 Reader	
	LOCI	•
	LSM Toolbox	•
	Landmarks	•
	Multiview Reconstruction	•
	Optic Flow	•
	Process	•
	Registration	•
	SPIM Registration	•
	Segmentation	•
	Skeleton	•
	Stacks	•
	Stitching	
	Template Matching	 cvMatch_Template
	Time Lapse	Align slices in stack

If the users do not want to install Fiji, they can also install plugins using ImageJ following this link: <u>https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin#install</u>

2. Data acquisition

We employed an upright microscope platform (BX51WI, Olympus, Waltham, MA) to capture one whole DRG with a water immersion 10X objective (UMPLFLN 10XW, 0.3 NA) using a regular halogen epi-illumination light source and a regular filter cube for sample illumination. A high-

speed ultra-low noise sCMOS camera (Zyla-4.2P, 82% quantum efficiency, Andor Technology, South Windsor, CT) was used to capture high-resolution images (1920 x 1920, 2 x 2 bin) at 100 frames per second, which provided a spatial resolution of 1.6 pixels/ μ m sufficient to resolve individual DRG neurons. This system allowed the recording of Ca²⁺ transients to resolve individual action potentials (APs) in multiple GCaMP6f - expressing DRG neurons simultaneously. These high-resolution images were saved as a tiff file. A whole DRG can be recorded with a spatial resolution of the GCaMP6f signals at individual DRG neurons as shown below¹.

3. Data processing

In section 3.1, we perform image alignment using an ImageJ plugin called 'Template Matching and Slice Alignment'. The positional shifts in-between different frames can be corrected in this process. In section 3.2, we perform morphological processing and marker-based watershed segmentation to determine the boundary of the neurons. We then extract the GCaMP6f signals in the form of pixel intensity (0–255) from individual DRG neurons for further data analysis.

3.1. Image alignment using the 'Template Matching and Slice Alignment' plugin

'Align_slices in stack' is one function of the 'Template Matching and Slice Alignment' plugin in Fuji. It utilizes the template matching approach to perform image alignment based on a selected region of interest (ROI). This function tries to find the same ROI in every frame and translate each frame so that the ROI can be at the same position throughout the whole stack⁵⁻⁷. This plugin was programmed and shared on Github by Dr. Qingzong Tseng. The detailed description of this plugin can be found on the website: <u>https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin</u>

The following steps are used to perform image alignment in this protocol:

1) Open a captured image stack 'Demo_stack.tif' in Fiji (or ImageJ).

File Edit Image File Edit Image Process New Image Image Open Ctrl+O Open Next Ctrl+Shift+O	× halyze Plugins Window Help A Q (*) × 8.0_172 [64-bit]: 835 commands; 16.imachese to search	File Edit Ima	egel ge Process D C A *** led rect or rotated	Analyze Plugins Window	- □ > Help Lut Ø Ø Ø Click here to search	× *
Open Samples Open Recent		🛃 Open Look in: 🏾	Demo	÷ +	× 🗈 💣 🖩 •	<
Import Show Folder Close Ctrl+W Close All Ctrl+Shift+W Save Ctrl+S Save As Revert Ctrl+R		Quick access	Demo_stack	20180525_L1_Jyr1 20180525_L1_Jyr JocationBrespo	1 20180525_L1_lyr1	
Page Setup Print Ctrl+P Export • Quit Fix Funny Filenames Make Screencast		This PC	20180525_L1_lyr1. File name: [Files of type: [20180525_L1_Jyr1 20180525_L1_Jyr 20180525_L1_Jyr1 20180525_L1_Jyr 20180525_L1_Jyr1_1_MMStack_Pos00 All Files (1.7)	1 20180525_L1_lyr1 ↓ ▼ Open ▼ Cancel	-

2) Run Plugins > Template Matching > Align slices in stack. A setting window will appear.

3) We can keep the settings shown below. With the selection of 'Subpixel registration', subpixel image translation can be performed by ImageJ's native translation function with bilinear or bicubic interpolation method. In our experience, both interpolation methods perform well.

d Align slices by cvMatchTemplate	×			
Select a rectangle region as the landmark	r for alignment.			
Matching method	Normalized correlation coefficient 💌			
Search area(pixels around ROI)	0			
(Template will be searched on the whole image if search area =0)				
Subpixel registration?				
Interpolation method for subpixel translation	Bilinear 💌			
🔽 show align coordinates in results table	?			
	OK Cancel			

4) Click 'OK' and a dialog will appear, asking you to select a square ROI for alignment. After creating the square ROI on the image, click 'OK'.

5) After the alignment process, all frames in the stack will be aligned and the displacements for each frame are printed out in both the log window and results table.

6) Save the aligned stack as a new tiff file for later uses.

Fig. Figi Is Just) ImageJ	Tiff
New P Open Ctrl+O Open Next Ctrl+Shift+O Open Recent P Import Stear Colder	Gif Jpeg Text Image ZIP Raw Data Image Sequence AVI
Close Ctrl+W Close All Ctrl+Shift+W Save Ctrl+S Save As	BMP PNG PGM FITS LUT
Revert Ctrl+R Page Setup Print Ctrl+P Export	Selection XY Coordinates Results Text
Quit Fix Funny Filenames Make Screencast	HDF5 (new or replace) HDF5 (append) Analyze MHD/MHA

3.2. Extracting GCaMP6f transient signal using a MATLAB GUI

We have developed a MATLAB graphical user interface (GUI) to further extract the GCaMP6f transient signal from aligned image stack. The first step is to load the image stack based on the user's selection. In the second step, the morphological operations are applied to the image stack. Regions with DRG signals can be identified by marker-based watershed segmentation. The third step is to extract all signals in the form of pixel intensity. Even though the result includes some noise signals, it provides the action potentials information about the whole DRG sample under stimulus. The last step is to display and save all response curves based on the generated results.

The operations of this MATLAB GUI can be shown as follows:

1) Open the file 'neuron_detector.m' in MATLAB. Click the green 'Run Section' icon. The GUI will appear like below.

2) After opening the GUI, the first step of operations is to load the correct image stack into the MATLAB workspace. Our GUI is able to recognize multiple image formats and video formats. Here, we use the 'Demo_stack.tif' file as an example. First, select '.tif' checkbox. Second, click the 'Browse...' button, a pop-up window will appear. Select the 'Demo_stack.tif' and click the 'Open' button.

Select an Image or Video file	× Images typeipegbmp Browse	Clear Options
← → → ↑ 📑 → This PC → Desktop → Demo		
Organize New folder	Video type	
X Quick access	Compartation Onlines	
52 Dropbox	Radius Range (pixels) Italiimum Radius	
This PC Demo stack	2 Panel	
US8-Bian (H:)	Maximum Radius Load the selector	d image stack Step
🥩 Network	12 Hentify all page	sible seurons Ster
	Neuron numbers (estimation) —	ble neurons
	20 Extract and plot the	response curves Step
	Reset Step 4 (Data saving)	
	Save all data in	the Excel file Exc
File name: Demo stack	All Data Files	age individually Image
	Open Cancel	
	Status Browse: no file selected	

All tif files under the same file path will be listed in the GUI. In this example, the 'Demo_stack.tif' is the only tif file under the selected path. Select and left click the file's name. The first frame of the stack will appear in the GUI and the 'Status' panel will also list the file's name.

trages type ☐ jpg ☐ jseg ☐ trap ☑ tf ☐ trif ☐ mages type ☐ jseg ☐ trap ☐ trad ☐ mages type ☐ jseg ☐ trap ☐ mages type ☐ jseg ☐ trap
Video type

After selecting the tif file, click the 'Step 1' button. It will load the stack into the MATLAB workspace. The process bar will appear and the 'Status' plane will change to 'Loading...' as shown below.

	-Images type ipgipegbmp itifitiff Video type mp4awimov	Load Browse Clear Options Demo stack bf
Lading selected Tif or Tiff stade	Segmentation Options Radius Range (pxels) Minimum Radius 12 Neuron numbers (estimation) 20 Reset Exit Exit Status Loading	Catted Panel Load the selected image stack Step 1 Identify all possible neurons Step 2 Extract and plot the response curves Step 3 Step 4 (Data saving) Save all data in the Excel file Save curves as image individually Image (bf)

After the 'Loading' process, a 'normalization' operation will be applied to the image stack. Each frame will be divided by its mean intensity value to remove the background fluctuation. Following the normalization operation, a variation map will be generated to show the intensity variations of the image stack.

When Step 1 is finished, the 'Status' plane will appear as follows:

Loading complete ! Normalization complete ! Step 1 is finished !
--

3) The second step of the operation is to identify all possible active neurons. They can be identified by adjusting the binarized threshold of the variation map. The marker-based watershed segmentation will label the boundary of the neurons. We use the parameters 'Minimum Radius' and 'Maximum Radius' to represent the estimated minimal and maximal radius of DRG neurons (in pixels). The identified regions outside the radius region will be excluded from the final result. The parameter 'Neuron numbers' represents the estimated number of positive neurons in the field of view. The default setting is based on our microscope setup: Olympus BX51 with a water immersion 10X 0.3 NA objective lens. These three parameters can be adjusted based on the magnification factor of the microscope setup and specimens under testing. Click the 'Step 2' button. The process bar will appear and the 'Status' plane will change to 'Start measuring...', as shown below.

euron_detector	- C	×
	Images type jpg jpg temp jpg jpg temp temp if stif temp temp impA ani mov	^
Finding cells.	Userset Control Peeral Load the selected image stack Step Maintum Radus 12 Meution numbers (estimation) 20 Reset Step 4 (Data saving) Save all data in the Excel file Ext Ext Batus Status Status	× 1 3

The 'Reset' button can adjust three parameters back to our default settings.

Segmentation Options
Radius Range (pixels)
Minimum Radius
2
Maximum Radius
12
Neuron numbers (estimation)
Reset

When Step 2 is finished, the image with labeled neurons will show in the GUI. The 'Status' panel will also list the number of possible neurons, and states 'Step 2 is finished!'.

4) Step 3 of the operation is to extract and plot the response curves from the identified neurons. The average normalized pixel intensity of the labeled neuron is calculated to represent its response over time. Click the 'Step 3' button, the process bar and the 'Status' plane will appear as shown below.

When Step 3 is finished, a full-screen figure with all response curves will appear as the figure shown below. The curves are ranked by their amplitude of variation. Some negative neurons are detected in this process. A better ranking strategy will be included in a later version of the protocol for removing negative responses.

The 'Status' plane will change to 'Step 3 is finished!', as shown below.

Status	
Step 3 is finished !	

5) Step 4 of the operation is to save the response curve data. There are two options shown below. For the first option, user can save all data in an Excel file: click the 'Excel' button -> select the desired saving folder and click the 'Select Folder' button.

Select Folder to Open	×	Images type	Browse Clear Options
- → → ↑ ↓ This PC → Desktop → Demo Organize ▼ New folder	✓ Ŏ 🖉 ✓ O Search Demo	Video type 	Demo stack tif
Couries access Desktop Desktop Documents Documents Pricture Returner Returner Returner Demo		Segmentation Options Radius Range (pixels) Minimum Radius 2 Maximum Radius 12 Neuron numbers (estimation) —	Control Panel Load the selected image stack Step Identify all possible neurons Step
 narraul Dropbox Onschwar Thus PC Network Y 		20 Reset Exit EXIT Help	Step 4 (Data saving) Step 4 (Data saving) Save all data in the Excel file Excel Save curves as image individually Image
Folder: Dumo	Select Folder Cancel	Status Step 3 is finished !	

When the saving process is done, the 'Status' plane will list the file path as shown below. A figure with all response curves (same as the Step 3 result) will also be saved in the same folder.

Statue	
Data saved in: G:\Desktop\Demo\Neuron_curves_data.xlsx	

In this example, the 'Neuron_curves_data .xlsx' Excel file will contain all neurons' response curves:

	5-6	4							Neur	on_curves_data	a - Excel			ill i E		Zichao Bian	2 12	- 0	×
File	Hom	ne Insert	Page Lay	out Form	ulas Data	Review	View	Help 🛇	Tell me wha	t you want to d								Q Share	
Paste	Clipboard	y + nat Painter 1 S	Calibri B I U	> 11 + ⊡ + Font	✓ A* A* ⁽¹⁾ • <u>A</u> • ⁽²⁾	= = =	 Image: Second se	9 Wrap Text I Merge & Ce It	enter -	ext \$ ~ % > Number	5 F	Conditional Form Formatting * Tab Styles	at as Cell le * Styles *	Insert Dele Cell	te Format	∑ AutoSum → ↓ Fill + ∳ Clear + Edi	Arr Contractions) 8: 1 -	^
A1		· E ×		Neuron	#1														Ŷ
-4	A	в	с	D	E	F	G	н	- T	1	ĸ	i c	м	N	0	P	Q	R	
1 N	euron #1	Neuron #2	Neuron #3	Neuron #4	Neuron #5	Neuron #6	Neuron #7	Neuron #8	Neuron #9	Neuron #10	Neuron #	11 Neuron #12	Neuron #13	Neuron #14	Neuron #15	Neuron #16	Neuron #17	Neuron #18	s Neur
2 1.	4857	1.3475	1.0033	1.1966	1.2569	1.6849	1.5588	1.5229	1.5106	1.5254	1.2882	1.3298	1.3449	1.2816	1.4373	1.3998	1.4125	1.2962	1.566
3 1.	4922	1.346	1.0118	1.194	1.2544	1.6952	1.5546	1.5312	1.5035	1.5249	1.3068	1.3318	1.3479	1.2687	1.4479	1.4058	1.3987	1.3025	1.571
4 1	4906	1.3504	0.99114	1.191	1.2487	1.6931	1.5518	1.5119	1.5079	1.5244	1.2898	1.3241	1.3519	1.2753	1.437	1.4069	1.4052	1.2956	1.573
5 1.	4927	1.3554	1.005	1.1968	1.252	1.6923	1.5566	1.5506	1.5009	1.5263	1.2993	1.3291	1.3536	1.2907	1.4478	1.4079	1.4078	1.3133	1.572
6 1.	4936	1.3527	1.004	1.1937	1.2527	1.6906	1.5377	1.524	1.5128	1.529	1.291	1.3045	1.3438	1.2847	1.4294	1.4002	1.4078	1.2957	1.573
7 1	4874	1.3497	0.99531	1.1947	1.2523	1.689	1.5515	1.5201	1.4993	1.5216	1.2921	1.3224	1.3484	1.2958	1.4336	1.4078	1.4081	1.2913	1.574
8 1.	4933	1.3565	0.99964	1.192	1.2543	1.689	1.546	1.5321	1.5006	1.5316	1.2891	1.3356	1.3449	1.2818	1.4408	1.4045	1.4107	1.3154	1.568
9 1.	4868	1.3489	1.0003	1.1927	1.2511	1.6934	1.55	1.5247	1.5124	1.5262	1.2947	1.3156	1.3446	1.2761	1.4425	1.4049	1.4117	1.3065	1.571
10 1.	4894	1.3512	0.99152	1.1906	1.252	1.6891	1.5581	1.5323	1.5048	1.524	1.3048	1.3357	1.351	1.2853	1.4236	1.4096	1.41	1.291	1.572
11 1	4767	1.3511	0.99207	1.1851	1.2503	1.6797	1.5562	1.5334	1.5012	1.5099	1.2894	1.3156	1.3465	1.2907	1.4411	1.3994	1.4046	1.307	1.565
12 1.	49	1.3549	1.0086	1.1892	1.2453	1.6906	1.5526	1.522	1.4981	1.5217	1.2922	1.3151	1.356	1.2835	1.4381	1.4064	1.3935	1.321	1.566
13 1.	4985	1.3523	0.99627	1.1894	1.2577	1.6872	1.555	1.5303	1.5021	1.5321	1.2799	1.3271	1.3512	1.2994	1.4447	1.402	1.3903	1.2989	1.569
14 1.	4948	1.351	1.0051	1.1952	1.2548	1.6918	1.545	1.5224	1.482	1.525	1.3023	1.3317	1.3409	1.2847	1.4454	1.3985	1.3915	1.3139	1.568
15 1.	4941	1.3536	1.0088	1.1916	1.2603	1.6929	1.55	1.5209	1.5033	1.5287	1.2934	1.3219	1.3451	1.2915	1.4374	1.4091	1.4102	1.3021	1.571
16 1.	4968	1.3574	1.0034	1.1912	1.2554	1.6882	1.5371	1.5212	1.4983	1.5233	1.2748	1.3335	1.3426	1.2964	1.442	1.4088	1.399	1.2975	1.568
17 1.	4999	1.3482	1.0019	1.1989	1.2498	1.6924	1.5598	1.5209	1.5023	1.5235	1.2879	1.3254	1.3535	1.3049	1.4433	1.4106	1.3982	1.3039	1.570
18 1.	4941	1.3527	0.99572	1.1959	1.258	1.6814	1.556	1.5197	1.4989	1.5229	1.2848	1.3204	1.3481	1.2865	1.4382	1.3989	1.4046	1.3151	1.568
19 1.	4926	1.3477	1.0016	1.1962	1.2574	1.6935	1.553	1.5354	1.4926	1.5177	1.2873	1.3173	1.353	1.2713	1.4396	1.3987	1.4084	1.3122	1.571
20 1.	4935	1.3496	0.99166	1.1931	1.2525	1.6892	1.551	1.5454	1.5008	1.5305	1.2927	1.3192	1.3486	1.2752	1.435	1.4105	1.4191	1.3019	1.57
21 1.	4931	1.3563	0.99145	1.1918	1.2622	1.6984	1.5431	1.5295	1.5012	1.5195	1.288	1.3296	1.3383	1.296	1.4504	1.3984	1.405	1.2949	1.573
22 1.	4911	1.3437	0.99567	1.1964	1.2559	1.706	1.5685	1.5167	1.4998	1.5185	1.2915	1.3317	1.3543	1.2834	1.4369	1.4033	1.4087	1.3003	1.565
23 1.	4883	1.3591	1.0054	1.203	1.2616	1.6981	1.5533	1.5249	1.4973	1.5215	1.2934	1.3285	1.351	1.2882	1.437	1.3971	1.4017	1.3169	1.564
24 1.	4986	1.3545	1.0016	1.1993	1.2488	1.6908	1.5544	1.5129	1.4984	1.5368	1.2892	1.3205	1.3506	1.2843	1.4371	1.4046	1.4053	1.2928	1.57
		Sheet1	۲									E I					n	·	100%

For the second option, user can save every curve with its corresponding neuron's location as a tif image file. All the tif files will be merged into one tif stack. Click the 'Image (tif)' button, the dialog window will appear. Select the desired saving folder and click the 'Select Folder' button.

a) Select Folder to Open ← → → ↑ ↑ <mark> </mark> → This PC → Desktop → Demo	✓ ð Ø Search Demo	images type jpg jpg iff Video type	Load Browse Clear Options Demo stack tif
Crypnic V Newfolder Cakita cess Cakita cess Dominada # Dominada # Dominad	Select Folder Cancel	mp4 mov Segmentation Options Range (pixels) Maximum Radus 2 Varimum Radus 12 12 12 Neuron numbers (estimation) 20 20 20 Reset Ext Ext Help Status Status Status Status	Control Panel Load the selected image stack Step identity all possible neurons Step Extract and plot the response curves Step Step 4 (Data saving) Save all data in the Excel file Exce Save curves as image individually Image

When the saving process is done, the 'Status' plane will list the file path as shown below.

The 'Individual neuron curve.tif' stack contains all neurons' curves and the corresponding locations. The frame number of this stack equals the possible neurons' number as shown below.

6) When all operations are finished, user can click the 'EXIT' button and select 'Yes' to exit the MATLAB GUI.

Reference:

1. Guo, Tiantian, et al. "Optical recording reveals topological distribution of functionally classified colorectal afferent neurons in intact lumbosacral DRG." *Physiological reports* 7.9 (2019): e14097.

2. Schindelin, Johannes, et al. "Fiji: an open-source platform for biological-image analysis." Nature methods 9.7 (2012): 676-682.

3. Schneider, Caroline A., Wayne S. Rasband, and Kevin W. Eliceiri. "NIH Image to ImageJ: 25 years of image analysis." *Nature methods* 9.7 (2012): 671-675.

4. "What Is MATLAB?" MATLAB & amp; Simulink, 2020, www.mathworks.com/discovery/what-is-matlab.html.

Tseng, Qingzong, et al. "A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels." *Lab on a chip* 11.13 (2011): 2231-2240.
 Tseng, Qingzong, et al. "Spatial organization of the extracellular matrix regulates cell-cell junction positioning." *Proceedings of the National Academy of Sciences* 109.5 (2012): 1506-1511.
 Tseng, Qingzong. "Study of multicellular architecture with controlled microenvironment." *Université Grenoble Alpes* (2011).